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LETTER TO THE EDITOR 

Partition functions of the two-dimensional Ashkin-Teller model 
on the critical line 

H Saleur 
Service de Physique ThCorique, CEN-Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 7 August 1987 

Abstract. By mapping the Ashkin-Teller model onto a scalar free-field theory we derive 
the continuum limit of the partition functions in various finite geometries. We justify 
expressions which have been conjectured recently, explaining in particular why the free 
field lives on an orbifold and why the spin should be described by a twist operator. 

The Ashkin-Teller (AT) model [ l]  appears of great interest in the light of conformal 
invariance. It presents a critical line, corresponding to a c = 1 central charge [2]. 
Numerical studies [3] have suggested that the spectrum of the transfer matrix for free 
boundary conditions ( BC) is N = 2 supersymmetric [4] at three particular points of 
this line, while the case of periodic or antiperiodic BC has led to controversial results 
[3,5,6]. Recently, using a reasonable ansatz and some known properties at the Ising 
decoupling point [l], Yang [ 5 ]  has obtained expressions for the continuum limit of 
the AT partition function in various finite geometries. He observed that the results 
could be interpreted in terms of a scalar free-field theory compactified on a circle [7] 
with a possible identification of cp with -cp (orbifold). In this letter, we derive these 
partition functions, using Coulomb-gas techniques which are well known in statistical 
mechanics [8,9]. We interpret physically the free-field formulation, explaining in 
particular why the AT spin translates into a twist operator [5,10]. 

The Ashkin-Teller model [ 11 consists of two Ising models coupled by a four-spin 
interaction, with action 

where (ik) denotes nearest neighbours of the square lattice 2, and S,t = f 1. The key 
of our study will be the reformulation into a solid-on-solid (SOS) surface model, along 
the lines of [8]. First it is convenient to rewrite (1) (using the invariance of the partition 
function TAT under t + S t )  as 

(2) &=-I K 2 S j s k  (1 + t , tk) - K 4 f ~ f k  
O k )  

and TAT is 

ZAT= 1 n eXp(KJ,tk)COSh(K,+ K24tk)[1 +SJSktanh(K2+ K2fitk)]. (3) 
(s.0 O k )  

A { t }  configuration can be represented by putting bonds on the dual lattice 9 which 
separates two sites with opposite f ,  as in an Ising low-temperature expansion [ll]. 
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The product of square brackets can then be expanded as in an Ising high-temperature 
expansion [ 113, with a bond on 2 each time the SjSk term is taken. Summing over 
all t and S gives 

exp(-2K4) 
2 Z A T = Z N  exp(2NK4)(cosh 2K2)2N (tanh 2K2)'( ) 

graphs cosh 2 K2 (4) 

where N is the total number of sites, the graphs are formed by polygons on 3 and 9 
with an even number of bonds attached to any point, the total numbers of bonds on 
each lattice being respectively 1 and d (see figure 1). If a given bond is present on 9, 
the product of the two corresponding spins is -1 and the tanh in ( 3 )  is zero. Thus 
the polygons on 2 and 9 do not intersect. The model presents a critical line given 
by the self-duality condition exp (-2K4) = sinh 2Kz, which terminates at coth 2K2 = 2. 
The graphs in (4) can be alternatively represented by six-vertex [ l l ]  configurations 
(figure 2) on the surrounding lattice Y (another square lattice, the vertices of which 
are the midpoints of the edges of 2, see figure 1). A bond on 2 or 9 is associated 
to a vertex of type 1, .  . . ,4 ,  such that arrows are reflected by it, with a net non-zero 
polarisation (figure 2). Edges with no bond are associated to vertices of type 5 or 6. 

Figure 1 .  A graph in the high-temperature expansion involving a polygon on 9 (whose 
sites are indicated by full circles) and a polygon on 9. The corresponding six-vertex 
configuration is indicated. 

1 2 3 4 5 6 

x x x x + +  
Figure 2. Arrow configurations in the six-vertex model. Vertices of type 1 , .  . . ,4 are 
associated to bonds on Y or 9, vertices of type 5, 6 to edges with no bonds. 
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Once a possible vertex is chosen somewhere, the whole correspondence follows by 
induction. A given configuration of bonds is thus associated with a configuration of 
the six-vertex model (defined up to a reversal of all arrows) and vice versa. Along the 
critical line, this six-vertex model reduces to an F model [ l l ]  with Boltzman weights 
W, = . . . = W, = 1,  W, = W, = coth 2K2.  Now the F model can be transformed into an 
SOS model [12] by introducing height variables cp on the faces of 9, such that two 
neighbouring cp differ by *qo, the highest being on the left of each arrow. It is finally 
argued [8 ,9]  that this SOS model renormalises onto a Gaussian model, with the free-field 
action 

For the standard choice cpo = iv, the value of the coupling constant is [8,13] 

g = (8 /~ ) s in - ' ($  coth 2K2). (6) 

The operators ofthe theory ( 5 )  which have been studied most in statistical m'echanics 
are the electric operators (vertex operators in the language of strings), i.e. exponentials 
of the free field De = exp iecp ( e  is called an electric charge), and the dual magnetic 
operators Om, the correlation function of which is obtained by imposing a discontinuity 
of 2m77 for the field cp along a line connecting two points ( m  is called a magnetic 
charge). Combining these two kind of operators one gets a more general object 6,, 
with dimension and spin [8] 

x,, = e2/2g  + gm2/2 se, = em.  (7) 

It is well known, for instance [8,9], that the thermal exponent of the AT model is given 
by xT = x2,, = 2/g, the polarisation exponent by xp = xIo  = 1/2g and the anisotropy 
exponent by xCR = xol = g /2 .  These depend on the temperature through (6) and ( 7 ) .  
In opposition to this, the magnetic exponent xH cannot be obtained by ( 7 )  and it has 
been conjectured for a long time [9] that it remains constant along the critical line, 
with the Ising value xH = $. Several authors [5,10] have noticed that this feature is 
characteristic of the twist operators OIT which have been much studied in string theory; 
their correlation function is defined by imposing a twist cp --f -9 of the field cp along 
a line connecting two points, and they play a fundamental role in the construction of 
field theories on an orbifold [14]. 

So far we have discussed the Ashkin-Teller model on an infinite plane. In a finite 
geometry, the boundary conditions generate various constraints on the successive 
transformations described above, resulting in a modified free-field theory ( 5 )  as we 
already demonstrated in [ 151. Consider the case of a torus defined by two periods wI , 
w 2 .  Then the above graph formulation (4) is still valid, but an asymmetry appears 
between 2 and 9: a closed path homotopic to w 1  or w 2  has to cross an even number 
of bonds on 9 since these correspond to a spin flip, while the number of crossed 
bonds on Y can be arbitrary. We shall first study the case where both these numbers 
are even; the reformulation as an F model is then possible in the same way as before. 
Now, since variables cp are associated locally to vertex configurations, they cannot be 
defined in a consistent way [15]: describing a closed path along w I ( w 2 )  the height 
varies by a finite amount S14p(S2q). The restriction of an even number of crossed 
bonds on Y and 9 translates then into the condition S,cp = 2 5 "  &cp = 27"), m( m')  E 

Z. For given m, m', the continuum limit is the frustrated partition function introduced 
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in [15] 

z m m . =  [Dql exp(-dd  
6, 'p=2iim 
S z q = 2 i i m '  

which is readily evaluated using the classical solution (such that AvclaSs = 0) 

1. m"+ m 2 ( ~ 2 , + ~ : ) - 2 m ' m ~ R ~ 1  z,,,. = z1 exp( -ng 
TI 

In this expression, T = w 2 / w I  = T R + i T ,  is the modular ratio and Z, is the partition 
function of the (periodic) free field (5) 

where v is Dedekind's function 
e2 

v ( 4 )  = q1/24  n (1 - 4 " )  q = exp(2im). 
n = l  

Summing over m, m' one gets the Coulombic partition function of [5 ,15]  

(this last equality being obtained by the Poisson formula) which is clearly modular 
invariant. The small-q behaviour Z - ( q ~ j ) - " ~ ~  gives the central charge c = 1, while 
the other terms qh4 j '~ ,~1  reproduce the whole spectrum (7 )  (xem = hem +Fe,, se, = he, - 
fie,) with e, m E E .  Note this is not the continuum limit of the F-model partition 
function. In the latter, frustration multiples of T are also allowed so that [15] 

m e Z / 2  

The continuum limit of the AT partition function will be obtained by adding to 
(1 1) the contribution of graphs where a closed path crosses an odd number of 2 bonds 
and an even number of 9 bonds. This can happen for a path homotopic either to w1 , 
or to w 2 ,  or to w I  plus w2 and there is a splitting in three different sectors. For a given 
sector the duality invariance ensures one gets the same result by exchanging the role 
of 2 and 9, so it is equivalent to consider the case where an odd number of bonds 
on 2 plus 9 is crossed. This corresponds in turn to an odd number of vertices of 
type 5,6 crossed, i.e. to antiperiodic BC for the F model. We now discuss the SOS 

equivalence by considering for instance the case of antiperiodic BC in the w 2  direction 
(broken line in figure 3) and periodic BC in the w ,  direction. For an arbitrary column 
there is a discontinuity S2cp which is multiple of n; and it is always possible to choose 
the origins of the heights so one goes from cp to -cp by crossing the broken line (figure 
3). Consider now the neighbouring columns. In the case of periodic BC for the F 
model, the vertex rules would ensure that S2cp is conserved so the heights along the 
broken line would become cp * in ,  -cp *fr, while here the antiperiodic BC change 62cp 
into S2cp * n, thus the heights on both sides of the broken line become cp f i r ,  -(q * i n )  
and the twist is conserved. By winding in this way around the whole torus along w ,  
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w 1  

Figure 3. A graph for which the number of 2' bonds crossed by a closed path along wI 
( w 2 )  is even (odd).  I t  translates into an F model with periodic (antiperiodic) BC in the wI 
( w z )  direction, the latter being indicated by the broken line. This in turn corresponds to 
an SOS model with periodic (twisted) BC in the w ,  ( w z )  direction. Heights cp are indicated 
in multiples of r r / 2 .  

one gets S,cp = 0 since Slcp # 0 would be incompatible with the existence ofthe horizontal 
twist. Thus antiperiodicity in the F model translates into a twist for the SOS model. 
The same is valid for other sectors. In the continuum limit one gets 

x ( 1  - e ~ p ( " i ~ ~ ) q ~ + ' - ~ ) - ' ' ~ x  complex conjugate. (14) 

Since there is no zero mode preventing the rescaling of cp, this does not depend on 
the coupling g and remains constant along the whole critical line. Summing over 
(a, P )  # (0,O) one gets the other contribution to the AT partition function as Z,,z,O+ 
Z0,1/2+Z1,2,1,2 which is modular invariant. ZlI2.,, and 21/2,1/2 have the small-q 
behaviour - ( q i j ) - ' / 2 4 ( q 9 ) 1 / 1 6  thus reproducing the dimension of the spin operator. 
This is natural since the graph expansion of the spin correlation function (S,  * S,)  
involves vertices with an odd number of legs in j and k, and thus an odd number of 
crossed bonds as explained above. 20,1/2 contains a marginal operator with dimension 
x = 2 constant along the critical line [ 171. The complete AT partition function on the 
torus is obtained by combining (11) and (14). The relative normalisations cannot be 
fixed by the microscopic approach (since there is a zero-mode subtraction in (11) only) 
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but are easily obtained by demanding the identity (spin) operators to be non-(twice) 
degenerate resulting in 

zAT+t Z J g ,  ~ 1 + ~ , , z , 0 + ~ 0 . l / 2 + ~ 1 / 2 , 1 , 2 .  (15) 

This expression was also obtained by Yang who conjectured TAT could be written as 
(11) plus a constant term, and identified the latter by using the fact that at g = 2  
( K ,  = 0), the AT model decouples into two Ising models and thus SAT = (2”sing)2. He 
also noticed each term of (15) had an interpretation in terms of a scalar free-field 
theory compactified on a circle. We have given here a microscopic justification of 
these different steps, explaining in particular why the spin operator in the AT model 
should translate into the twist operator in the Gaussian free field. Equation (15) can 
also be written 

TAT+: {Zc[g, 11-Zc[1, l l )+ZJ4,11.  (16) 

If g = 1 this gives ZJ4, 11, corresponding to the XY-model partition function at the 
Kosterlitz-Thouless point obtained in [ 151. Similarly, for g = 4 one gets {3Zc[4, 13 - 
Zc[l,  1]}/2, which is the four-state Potts model partition function [15]. 

We can now generalise these results. Consider a toroidal geometry with antiperiodic 
BC for the spins S and t in the wl direction. This is equivalent to putting a negative 
coupling K 2  for each bond of 2 crossing a line parallel to w 2  in the graph expansion. 
Following the preceding derivation we see that Zo,l/z and Zl/2,1,2 contribute now with 
a minus sign since they are associated with an odd number of bonds crossing the line. 
Thus 

22, tZc[g,ll + Z1,2.o-Zo.1,2 - z 1 , 2 . 1 , 2  (17) 
and in the same way 

These results were also obtained by Yang [5] assuming the Gaussian operators Oem 
were even and the magnetisation operators odd under spin reversal, which we estab- 
lished here. 

Finally we consider a rectangle of sides x = L, y = T with free (periodic) BC in the 
x ( y )  direction. Then the AT model translates into a SOS model with cp constant on 
both sides parallel to y.  Thus there are no discontinuities in the y direction and any 
discontinuity multiple of r in the x direction (there is no more restriction on the parity 
of the number of crossed bonds in this case). Using 

and the classical solution qclass = r m x /  L one gets 

This was also obtained by Yang [5] who assumed 2:: could be described by a chiral 
Gaussian theory, and then used the decoupling point g = 2 to determine the radius of 
compactification. 
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